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Background and Problem Definition

Aera Under Precision-Recall Curves (AUPRC):

AUPRC =
∫

∞

−∞

Pr(Y = 1|F ≥ c)d Pr(F ≤ c|Y = 1)

where c is the prediction threshold. Y ∈ {0,1} is the label. For a finite set of examples
D = {(xi,yi), i = 1, . . . ,n} with the prediction score for each example xi given by hw(xi),
we consider to use AP to approximate AUPRC, which is given by

AP =
1

n+

n

∑
i=1

I(yi = 1)

n
∑

s=1
I(ys = 1)I(hw(xs)≥ hw(xi))

n
∑

s=1
I(hw(xs)≥ hw(xi))

where n+ denotes the number of positive examples. It can be shown that AP is an unbiased
estimator in the limit n → ∞ [1].

Surrogate AP Loss

min
w

P(w) =
1

n+
∑

xi∈D+

−
n
∑

s=1
I(ys = 1)ℓ(w;xs;xi)

n
∑

s=1
ℓ(w;xs;xi)

. (1)

ℓ(w;xs,xi) is a surrogate function of I(hw(xs)≥ hw(xi)), e.g., squared hinge loss, logis-
tic loss and sigmoid loss, etc.

Related Work

1 Traditional: Hill Climb Search [1], Dynamic Programming [2]
2 Maximizing AP Score: Approximate gradient of AP or its smooth function Sensitive to

batch size: SmoothAP [3], FastAP [4]

Research Question

Can we design direct stochastic optimization algorithms both in SGD-style and
Adam-style for maximizing AP with provable convergence guarantee? Yes!

Problem Formulation

We cast the problem into a finite-sum of compositional functions. By denoting

g(w;x j,xi) = [g1(w;x j,xi),g2(w;x j,xi)]
⊤ = [ℓ(w;x j,xi)I(y j = 1), ℓ(w;x j,xi)]

⊤

gxi(w) = Ex j∼D[g(w;x j,xi)],
(2)

where gxi(w) : Rd → R2. Let f (s) = −s1
s2

: R2 → R. Then, we can write the surrogate AP
loss P(w) as a sum of compositional functions:

P(w) =
1

n+
∑

xi∈D+

f (gxi(w)) = Exi∼D+[ f (gxi(w))]. (3)

Assumptions

Assumption 1: Assume that

(a) There exists ∆1 such that P(w1)−minw P(w)≤ ∆1;
(b) There exist C,M > 0 such that ℓ(w;xi,xi)≥C for any xi ∈ D+, ℓ(w;x j,xi)≤ M, and

ℓ(w;x j,xi) is Lipscthiz continuous and smooth with respect to w for any
xi ∈ D+,x j ∈ D ;

(c) There exists V > 0 such that Ex j∼D[∥g(w;x j,xi)−gxi(w)∥2]≤V , and
Ex j∼D[∥∇g(w;x j,xi)−∇gxi(w)∥2]≤V for any xi.

With a bounded score function hw(x) the above assumption can be easily satisfied. As-
sumption 1 also implies P(w) is smooth.

Proposed Stochastic Algorithms: SOAP

Algorithm 1 SOAP
1: Input: γ,α,u0, and other parameters for SGD-stype update or Adam-stype update.
2: Initialize w1 ∈ Rd, u ∈ R|n+|×2

3: for t = 1, . . . ,T do
4: Draw a batch of B+ positive samples denoted by B+.
5: Draw a batch of B samples denoted by B.
6: u = UG(B,B+,u,wt,γ,u0)
7: Compute (biased) Stochastic Gradient Estimator

G(wt) =
1

B+
∑

xi∈B+

∑
x j∈B

(u1
xi
−u2

xi
I( j= 1))∇ℓ(w;x j,xi)

B(u2
xi
)2 (4)

8: Update wt+1 by a SGD-style method or by a Adam-style method
wt+1 = UW(wt,G(wt))

9: end for

Algorithm 2 UG(B,B+,u,wt,γ,u0)
1: for each positive xi ∈ B+ do
2: Compute

[g̃xi(wt)]1 =
1

|B| ∑
x j∈B

y j=1

ℓ(wt;x j,xi)

[g̃xi(wt)]2 =
1

|B| ∑
x j∈B

ℓ(wt;x j,xi)

3: Compute u1
xi
= (1− γ)u1

xi
+ γ[g̃xi(wt)]1

u2
xi
= max((1− γ)u2

xi
+ γ[g̃xi(wt)]2,u0)

4: end for
5: Return u

Algorithm 3 UW(wt,G(wt))
1: Option 1: SGD-style update (paras:

α)
wt+1 = wt −αG(wt)

2: Option 2: Adam-style update (paras:
α,ε,η1,η2)

ht+1 = η1ht +(1−η1)G(wt)

vt+1 = η2v̂t +(1−η2)(G(wt))
2

wt+1 = wt −α
ht+1√

ε + v̂t+1

where v̂t = vt (Adam) or v̂t =
max(v̂t−1,vt) (AMSGrad)

3: Return: wt+1

SGD-Style Theorem (Algorithm 1 + 2)

Suppose Assumption 1 holds, let the parameters be α = 1
n2/5
+ T 3/5

,γ = n2/5
+

T 2/5, ∀ t ∈ 1, · · · ,T ,

and T > n+. Then after running T iterations, SOAP with a SGD-style update satisfies

E
[

1
T

T
∑

t=1
∥∇P(wt)∥2

]
≤ O(

n2/5
+

T 2/5), where O suppresses constant numbers.

Adam-Style Theorem (Algorithm 1 + 3)

Suppose Assumption 1 holds, let the parameters η1 ≤
√

η2 ≤ 1, α = 1
n2/5
+ T 3/5

,γ =
n2/5
+

T 2/5,

∀ t ∈ 1, · · · ,T , and T > n+. Then after running T iterations, SOAP with an AMSGRAD

update satisfies E
[

1
T

T
∑

t=1
∥∇P(wt)∥2

]
≤ O(

n2/5
+

T 2/5), where O suppresses constant numbers.
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Ablation Study
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Figure 1:Left most: Comparison of convergence of different methods in terms of test AUPRC scores on MIT
AICURES. Middle: Consistency between AP andSurrogate Objective -P(w)vs Iterations on CIFAR10. Right
most: Insensitivity to batch size of SOAP.

Table: The test AUPRC over 3 independent runs by SOAP with different surrogate functions.
Data CIFAR10 CIFAR100
Networks ResNet18 ResNet34 ResNet18 ResNet34
Squared Hinge 0.7629 (±0.0014) 0.7012 (±0.0056) 0.6251 (±0.0053) 0.6001 (±0.0060)
Logistic 0.7542 (±0.0024) 0.6968 (±0.0121) 0.6378 (±0.0031) 0.5923 (±0.0101)
Sigmoid 0.7652 (±0.0035) 0.6983 (±0.0084) 0.6271 (±0.0043) 0.5832 (±0.0054)

Comparison with State-Of-The-Art (SOTA) methods

Soap code for reproducing results. https://github.com/Optimization-AI

•Cross entropy loss (CE)
• Three surrogate AP: MinMax, SmoothAP, FastAP
• SOTA imbalanced DL methods: LDAM, CB-CE, Focal, and AUC-M

Tasks: Imbalanced binary image classification.
Datasets: Binary Imbalanced CIFAR10, CIFAR100 (Manually Constructed), Melanoma
Evaluation Metric: AUPRC Model: ResNet18, ResNet34 Optimzer: SGD-Style SOAP
Table: The test AUPRC on the image datasets with two ResNet models. We report the
average AUPRC and standard deviation (within brackets) over 5 runs.

Datasets CIFAR-10 CIFAR-100
Networks ResNet18 ResNet34 ResNet18 ResNet34
CE 0.7155 (± 0.0058) 0.6844(± 0.0031) 0.5946 (± 0.0031) 0.5792 (± 0.0028)
CB-CE 0.7325 (± 0.0039) 0.6936(±0.0021) 0.6165 (± 0.0096) 0.5632(± 0.0129)
Focal 0.7183(± 0.0082) 0.6943(± 0.0007) 0.6107(± 0.0093) 0.5585(± 0.0285)
LDAM 0.7346 (± 0.0125) 0.6745(± 0.0043) 0.6153 (± 0.0100) 0.5662(± 0.0212)
AUC-M 0.7399(± 0.0013) 0.6825(± 0.0089) 0.6103 (± 0.0075) 0.5306(± 0.0230)
SmoothAP 0.7365 (± 0.0088) 0.6909 (± 0.0049) 0.6071(± 0.0143) 0.5208 (± 0.0505)
FastAP 0.7028 (± 0.0341) 0.6798 (± 0.0032) 0.5618(± 0.0351) 0.5151(± 0.0450)
MinMax 0.7228 (± 0.0118) 0.6806(± 0.0027) 0.6071(± 0.0064) 0.5518(± 0.0030)
SOAP 0.7629(± 0.0014) 0.7012(± 0.0056) 0.6251 (± 0.0053) 0.6001(± 0.0060)

Tasks: Graph Neural Network Prediction
Datasets: HIV, MUV, MIT-AICURES Evaluation Metric: AUPRC
Model: GINE, MPNN, ML-MPNN Optimzer: Adam-Style SOAP
Table: The test AUPRC values on the HIV datasets with three graph neural network models
over 3 independent runs.
Dataset Method GINE MPNN ML-MPNN

HIV CE 0.2774 (± 0.0101) 0.3197 (± 0.0050) 0.2988 (± 0.0076)
CB-CE 0.3082 (± 0.0101) 0.3056 (± 0.0018) 0.3291 (± 0.0189)
Focal 0.3179 (± 0.0068) 0.3136 (± 0.0197) 0.3279 (± 0.0173)
LDAM 0.2904 (± 0.0008) 0.2994 (± 0.0128) 0.3044 (± 0.0116)
AUC-M 0.2998 (± 0.0010) 0.2786 (± 0.0456) 0.3305 (± 0.0165)
SmothAP 0.2686 (± 0.0007) 0.3276 (± 0.0063) 0.3235 (± 0.0092)
FastAP 0.0169 (± 0.0031) 0.0826 (± 0.0112) 0.0202 (± 0.0002)
MinMax 0.2874 (± 0.0073) 0.3119 (± 0.0075) 0.3098 (± 0.0167)
SOAP 0.3385 (± 0.0024) 0.3401 (± 0.0045) 0.3547 (± 0.0077)
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