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Distributionally Robust Optimization

@ Problem Formulation:

n

min max {F,,(W) =" pib(wiz) — h(p,1/n) + r(w)}, (1)

weRd pEA, -
i=1

where A, ={p€ R": > . pi=1,p; >0}

¢(w; z): denotes a loss function on data z = (x,y;) ~ D,
h(p,1/n) : a divergence measure

r(w) is convex regularizer of w

Non-Convex Concave Min-Max Optimization
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e Data Imbalance (Rahimian, H., Mehrotra, S. (2019).)

@ Label Noise (Li, Tian, et al. (2020).)
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Optimization Methods

Primal-Dual algorithms:
e PG-SMD (Rafique et al. 2018), O(1/¢*)
@ Epoch Primal-Dual SGD (Yan et al. 2020), O(1/¢*)
@ Stoc-AGD (Yang et al. 2020)
o O(1/u2€) by leveraging PL Condition
e PE-SGDA (Guo et al. 2020)
o O(1/u?¢) by leveraging PL Condition
Deficiencies:
@ O(n) computational cost per variable updates.
Note: Primal-Dual are quite slow compared with SGD for DL, it required
additional computational cost for the dual variable p, which is depending
on the data size n.
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From Min-Max to Compositional Problem

@ Min-Max Formulation:

n

min max {Fp(w) = Z pil(w; z;) — )\Z pi log(np;) + ”(W)}a (2)

weRd peA, :
i=1

where A, ={pe R":> .pi=1.p; >0}
c[ Online Setting j

@ Compositional Minimization F

min {de(w) = Mog (E;exp (¢(w; 2)/N)) + r(W)}. (3)

weRd

@ Belongs to a genereal family of problems:

min f(Eelg(w,€)]) + r(w)
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Compositional Problem

Optimization Algorithms for Problem
e ASC-PG (Wang et al. 2017)
o O(1/e*®)
e Polynomially decay stepsize.
e CIVR (Zhang et al. 2019)
o O(1/€%) and O(1/pe) by leveraging PL condition.
o Large minibatch size required O(1/¢)
Question: Can we design a better algorithm that is independent of data

size n, is more practical for deep neural network training, and also has
faster convergence rates? Yes

(University of lowa) DRO 7/24



We propose a practical online algorithm, RECOVER, for solving a class of
non-convex distributionally robust optimization (DRO) objectives:
It achieves:

Best Rates

/ ( Lower Bounds |
@ General non-convex: O(1/¢%)
@ Polyak-Lojasiewicz (PL) condition: O(1/ )

without any requirements on large mini batch or reference points
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Contribution

@ Algorithm Comparison

Style Algorithms NC-SM PL Condition Batch | Geo 7
Stoc-AGDA - 0(1/p2¢) 0(1) X
Primal-Dual | PG-SMD2 | O(n/e? 4 1/¢*) - O(n) X
PE-SGDA - O(1/p%€) 0(1) v
ASC-PG O(1/€*?) - 0o(1) X
Compositional RCIVR 0(1/¢€3) O(1/pelog(1/€)) | O(1/e) X
RECOVER 0(1/€) O(1/pie) o1) | v

where NC-SM denotes the non-convex smooth objective without PL

Condition.
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© RECOVER is a duality-free algorithm that much faster than SOTA
primal dual algorithms.

© RECOVER resembles the practical stochastic Nesterov's method in

several perspectives that are widely used for learning deep neural
networks
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Assumption 1. Let C'y, Ly, Cy and L, be positive constants. Assume that

fa) f:RP — Risa Cy-Lipschitz function and its gradient V f is L-Lipschitz.

(b) g : BT — P satisfies E| g, (wi) — ga(w2)|?] < C§||w1 — wo||? for any wy, wo and its
Jacobian Vg, satisfies E[|V ga(w1) — Vga(w2)|?] < L§|\W1 — wal%

(c) r: R S RU {oc} is @ convex and lower-semicontinuous function.
(d) F, =infy F(w) > —o0 and F'(wy) — F, < Ap for some initial solution w.

Assumption 2. Let 0, and o, be positive constants and o’ = o'g e og,, Assume that

E,[|lgz(w) — g(w)|*] < 07, Eq[[|[Vga(w) — Va(w)|*] < oy
PL Condition

Assumption 3. F'(w) satisfies p-PL condition if there exists yr > 0 such that

2u(F(w) — min, F(w)) < |[VF(w)|".
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Algorithm 1: COVER (wyq, ugy, v, {1: }. T, PL = False)

I: Let ay = enf
2: if not PL then

3:  Draw a samples z and construct the estimates: uo = gz(wo), vo = Vgz(wa)
4: end if

5:fort=0,....,T—1do
6 Wepg 4 proxyt(w, —n;v, Vi(u))
7 Draw a samples z,,, and update

U1 = Gzepn (Wept)+ (1 —arp1) (0 — gg, (W)

Vipt = Via, (Wept) + (1= aep1)(ve = Vg, (W)

8: end for
9: Return: (wr, ur, v,) for randomly selected T € {1.....T}.

Theorem 2. Assume the Assumption I and 2, for any C' = 0, k = C“fla. c=128L + 02/(7Lk3),
w = max((16Lk?), 207, (%), and n, = k/(w + a2t)*/3. The output of COVER satisfies

~f A 2
ElJGn. (v < 0 (30 + 727 ) - )

where t, is sampled from {1, ... T}
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min f (E¢[g(w; £)])

Upr1 = 8e(Wet1) + (1 — aet1)(ue — ge(we))

T
Wiyl = We — 77Vt+1Vf(”t+1)
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Verr = Vge(Wet1) + (1 — arp1)(ve — Vge(we))



Algorithm: RECOVER

@ Stagewise Restarting COVER Algorithm

Algorithm 2: RECOVER(wq, 0, ¢)
1: Initialization: Draw a sample &; and construct the estimates ug = ge,(wo), vo = Ve, (W)
2 fork=1,..., K do
3 (wyg, g, vi) = COVER(Wy, 1, up 1, Vi1, 7k, Tk, True)
4: change 1y, T}, according to Theorem 3
5
6

. end for
: Return: wr
Geometrica”y J Lower Bounds
! Decreases fS [
Main Theorem: RECUV S SEHES
% Complexity
. Ve 2 .
By setting b= O(1), nk.'= 2512, Tk = max{ 3/2\/7, Lﬂ;‘k , Y order to
have E[F (wk )\ Fx] < €. The sample complexity is O(ME) .

Constant

Mini-
batch Size
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Assumption 3. F(w) satisfies pi-PL condition if there exists ju > 0 such that
PL Condition ~ 24(F(w)— min F(w)) < [VF(w)|P.

Lemma 1. Let Fy(w) = S0 pil(w:z,). Iffor any p € A, Fyp(w) satisfies a pi-PL condition,
then Fyro(w) = Mog(L 37, exp(€(w;z,)/N)) satisfies p-PL condition.

Lemma 2. Assume that input {(x1,y1). ..., (X, 9} satisfies ||x;|| = 1 and ||x; — x;|| = 6,
where y; € R Consider a deep neural network with i g = ¢(Ax;), iy = ¢(Wihy—y). 1 =
L.y Lyl = Bhy , where W, € RY*Y, 6 is the ReLU activation function, and (W z;) = ({j; —

vi)? is a square loss. Suppose that for any W, p! = exp(6(W;2;)/A)/ Y1, exp(£(W;2) /) =
po > 0, then with a high probability over randomness of Wy, A, B for every W with |W — Wy|| <

O(1/poly(n, L,py*,67Y), there exists a small g > 0 such that |V Fao(W)|[% > p(Fagyo(W) —
minw Fdro(W))-
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Three Experiments

e Compare RECOVER with five State-Of-The-Art (SOTA) baselines
from two categories: (i) primal-dual algorithms for solving the
primal-dual formulation of DRO, and (ii) algorithms that are designed
for the stochastic compositional formulation of DRO.

o Verify the advantages of DRO over Emperical Risk Minimization
(ERM) for imbalanced data problems

@ Show the RECOVER is also an effective fine-tuning algorithm for
large-scale imbalanced data training.
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Compare RECOVER with SOTA Baselines

@ Evaluation: Testing accuracy, GPU time and sample complexity .

e \=5H

@ /(w,z) cross entropy loss.

e Datasets (Imbalanced Multi-Classification Tasks):

First Half | Last Half batch | Classes | Size Network Arch
STL10 100 500 32 10 5000 Resnet20
Clifar10 100 5000 128 10 50000 Resnet20
CIFAR100 100 500 128 100 50000 Resnet20
iNaturalist 2019 | Practical Imbalanced Datatset | 64 1010 265,213 | Inception-V3
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Testing Accuracy vs Running Time
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Conclusion and Observation:
© RECOVER is much faster than primal-dual algorithms while achieving
comparable results on compositional results.
@ It could save days of training times on iNaturalist2019.

(University of lowa) DRO 20/24



Testing Accuracy vs # of processed training example
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Figure: Testing accuracy vs # of processed training examples

Conclusion and Observation:
© RECOVER has the same number of samples with other algorithms.
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DRO with RECOVER vs ERM with SGD

@ We compare the test accuracy learned by optimizing DRO using
RECOVER and optimizing ERM using SGD on the imbalanced
datasets: STL10, CIFAR10, CIFAR100, with four imbalance ratio

p = {0.02,0.05,0.1,0.2}.

Table 2: Test accuracy (%), mean (variance), of SGD for ERM and RECOVER for DRO. Bold

numbers represent better performance.

IMRATIO STLI0O CIFARL0 CIFAR100
SGD RECOVER SGD RECOVER SGD RECOVER
0.02 3797 (0.62)  38.08 (0.35) | 65.36(0.41) 66.14 (0.24) | 38.99(0.39) 39.45(0.32)
0.05 41.12(0.89) 42,68 (0.37) | 7474 (0.51) 75.90(0.11) [ 4579 (0.48) 44.47 (0.44)
0.1 | 46.03(0.93) 4894 (0.74) | 7932(0.18) 80.93(0.09) | 49.45(0.25) 50.84(0.74)
0.2 5175 (1.31)  56.06 (1.59) | 84.84(0.27) 85.93(0.02) | 55.80(0.55) 56.90 (0.18)

Imbalance Ratio: The number of positive samples vs the number of

negative samples. The smaller the ratio, the harder the task.
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o ImageNet-LT, Places-LT

@ ResNetb0, ResNet152 Pretrained models.

Table 3: Test accuracy (%) of finetuned models by different
methods.
Model ImageNet-LT | Places-LT
Pretrained 40.50 2328
CE (SGD) 41.29 (3e-3) | 27.47 (le-3)
Focal (SGD) 41.10 (2e-2) | 27.64 (6e-3)
DRO (RECOVER) | 42.30 (4e-4) | 28.75 (de-5)
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