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Introduction
Deep Metric Learning:

• Task: Learning a metric to measure the distance between
pairs by training a deep neural network.

• Goal: Euclidean distance of pairs from the same class shall
be small, while pairs from different classes shall be large.

Overview of Training Process:

• Pair-based Losses: given two examples (xi, yi), (xj, yj),
deep neural network is parametrized as θ:

`ij(Θ) = `(f (xi; θ), f (xj; θ); yij) (1)
where yij = 1 if yi = yj, and yij = 0 if yi 6= yj. f (·, θ) is
the output of the neural network.

Optimization

A mini-batch of examples denoted by {x1, ...,xB}, B is the
batch size. B2 pairs are constructed between this samples. The
naive approach (most common) for DML is minimizing average
loss function in terms of θ within a batch:

Lavg(θ) = 1
B2

B∑
i=1

B∑
j=1

lij(θ)

• Design More Complicated Losses:
• Lifted-Structure(LS) [1] loss:

LLS =
B∑
i=1

[log
∑
k∈Pi

eλ−Sik + log
∑
k∈Ni

eSik−λ]+, (2)

• Multi-Similarity(MS) [2] loss:

LMS = 1
B

B∑
i=1
{1
α

log[1 +
∑
k∈Pi

e−α(Sik−λ)] + 1
β

log[1 +
∑
k∈Ni

eβ(Sik−λ)]}

(3)
where λ, α, β are hyper-parameters. Sij =< f (xi; θ), f (xj; θ) >
denotes the similarity of the two samples in the embedding space.

• Mining Strategy (Sampling):
• Hard (Seimi-Hard): Select hard negative pairs whose distance is

smaller than that between the positive pairs.
• Distance Weighted Sampling (DWS): Negative pairs sampled

according to their distance distribution within a batch.
Deficiency:

• Losses are more and more complicated but hard to
understand, and also fail to explain why its effectiveness.

• Heuristic and lack of theoretical guarantee.
• Fail to address the most fundamental challenge: Pair

Imbalance

- represent positive pairs, -·- represent negative pairs.

Contributions
• We proposed a general DRO framework for DML.

Theoretical justification of the proposed framework is
provided from the perspective of advance learning
theories.

• The proposed general DRO framework can recover
SOTA complicated pair-based losses: MS Loss and LS
Loss by specifying different uncertainty sets.

• More effective solutions has been provided under DRO
framework for tackling DML. Experimental results show
that our proposed variants of DRO framework
outperform SOTA methods on several benchmark
datasets

General DRO-based Framework
•

L(θ) = max
p∈U

g(θ,p) :=
B∑
i=1

B∑
j=1

pijlij(θ), (4)

where p ∈ RB2
+ is a non-negative vector with each

element pij representing a weight (sampling probability)
for an individual pair. U ⊆ RB2 denotes the decision set
of p.

• L(θ) is more robust to pair imbalance than Lavg.
• Theoretical analysis in [3, 4] verified that L(θ) is a

better approximation than Lavg(θ) for E[`(θ)].
• LS loss and MS loss can be recovered by setting U .

Theoretical Guarantees
Let Z = {Z1, ..., Zn} be i.i.d. random losses taking values in [M0,M1] where M =
M1 −M0. Suppose p̂n = (1/n, . . . , 1/n) is the empirical distribution, Uφ = {

∑
i pi =

1, pi ≥ 0, Dφ(p‖p̂n) ≤ ρ
n}. Denote the empirical variance of Z1, . . . , Zn by Varn(Z) and

fix ρ ≥ 0. If n ≥ max{ 24ρ
Var(Z),

16
Var(Z), 1}M

2, then

sup
p∈Uφ

n∑
i=1

piZi = 1
n

n∑
i=1

Zi +
√

2ρVarn(Z)
n

.

Three Variants DRO for DML
For each xi serve as an anchor in a given mini-batch whose
size is B, Pi = {j|yij = 1, j ∈ [B]} and Ni = {j|yij =
0, j ∈ [B]} denote the index sets of positive and negative
pairs, respectively. P = ⋃B

i=1 Pi and N = ⋃B
i=1 Ni. Three

variants of general framework with different uncertainty set U
is defined as follows:

• DRO-TopK:

maxp

B∑
i=1

∑
j∈Pi∪Ni

pijlij(θ)

s.t.
B∑
i=1

∑
j∈Pi∪Ni

pij = 1, 0 ≤ pij ≤ 1/K,

• DRO-TopK-PN:

max
p∈{0,1}P+N

B∑
i=1

∑
j∈Pi∪Ni

pijlij(θ)

s.t.
B∑
i=1

∑
j∈Pi

pij ≤
K

2
,
B∑
i=1

∑
j∈Ni

pij ≤
K

2
.

• DRO-KL:
max

p∈RP+N
+

B∑
i=1

∑
j∈Pi∪Ni

pijlij(θ)− γDKL(p|| 1
P + N

),

s.t.
B∑
i=1

∑
j∈Pi∪Ni

pij = 1,

where γ > 0 is a hyper-parameter and DKL denotes the
KL divergence between two distributions.

• Close-form p can be derived using KKT-Condition.

Empirical Studies

Datasets

• Three Benchmark Datasets
Data Sets # of training # of testing # of Classes

Cub-200-2011 5864 5924 200
Cars-196 8054 8131 196
In-shop 14,218 12,612 7,970

• Evaluation Metric: Recall@k
• Margin Loss:

`ij(θ) = [α + yij(λ− Sij)]+
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Figure: Quantitive comparison with SOTA pair mining and complicated losses

Sensitivity of K
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Recover of LS and MS

Recall@K(%) 1 10 20 30 40 50
MS 79.8 94.9 96.8 97.6 97.9 98.3
LS 82.6 94.1 95.6 96.4 96.9 97.4

DRO-KL-G-γ = 1 84.8 95.9 97.3 97.9 98.2 98.5
DRO-KL-G-γ = 0.1 85.1 96.1 97.5 98.0 98.3 98.5
DRO-KL-G-γ = 0.01 85.8 96.2 97.9 97.8 98.2 98.4
DRO-KL-G-γ = 0.001 85.7 96.1 97.4 97.9 98.2 98.5

Table: Recover of MS loss and LS loss on In-Shop

SOTA Quantitive Results

Recall@K 1 10 20 30 40 50
FashionNet 53.7 73.0 76.0 77.0 79.0 80.0

HDC 62.1 84.9 89.0 91.2 92.3 93.1
HDL 80.9 94.3 95.8 97.2 97.4 97.8
ABIER 83.1 95.1 96.9 97.5 97.8 98.0
ABE 87.3 96.7 97.9 98.2 98.5 98.7
MS 89.7 97.9 98.5 98.8 99.1 99.2

DRO-TopKM(Ours) 91.0 98.1 98.7 99.0 99.1 99.2
DRO-TopKB(Ours) 90.7 97.7 98.4 98.8 99.0 99.1

DRO-TopK-PNM(Ours) 91.3 98.0 98.7 98.9 99.1 99.2
DRO-TopK-PNB(Ours) 91.1 98.1 98.6 98.8 99.0 99.2

DRO-KLM(Ours) 90.8 98.0 98.6 99.0 99.1 99.2

Table: Recall@k on In-Shop
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