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Contributions Empirical Studies
Deep Metric Learning: « We proposed a general DRO framework for DML. Datasets
Task: Learning a metric to measure the distance between Theoretical justification of the proposed framework is
pairs by training a deep neural network. provided from the perspective of advance learning Three Benchmark D
. . . : s ree benchmar atasets
Goal: Euclidean distance of pairs from the same class shall theories. Data Sets | # of training # of testing| % of Classes
be small, while pairs from different classes shall be large. The proposed general DRO framework can recover Cub-200-2011 5364 5024 200
— SOTA complicated pair-based losses: MS Loss and LS Cars-196 8054 8131 196
Deep Vo T o Loss by specifying different uncertainty sets. In-shop 14,218 12,612 7,970
W] S 'T':_‘ More effective solutions has been provided under DRO - Evaluation Metric: Recall@k
Soue 1 “AAa framework for tackling DML. Experimental results show - Margin Loss:
, .
.' that our proposed variants of DRO framework 0ii(0) = [a + yi; (A — Sij)+
_ o outperform SOTA methods on several benchmark
Overview of Training Process: datasets Imbalance and Runtime
Sampling Embedding Objective
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Pair-based LOSSGS: given two examp|es (Xz',y@'), (X],y]), wnere p - + 1S a hon- negat|Ve vector with eac N 00053 0.026 oGz ods o o0 @
deep neural network is parametrized as 0: element Pij representmg d WeItht (Samplmg probablllty) (a) Recall vs Imbalance Ratio (b) Average running time of every it-
for an individual pair. U C R” denotes the decision set eration
gzg(@) — f(f(XZ, 9)7 f(Xj; 6))7 y”&j) (1) of D. Figure: Quantitive comparison with SOTA pair mining and complicated losses
where y;; = 1 if y; = y;, and y;; = 0if y; # y;. f(-,0) is L(0) is more robust to pair imbalance than L. Sensitivity of K
the output of the neural network Theoretical analysis in [3, 4] verified that £(0) is a
better approximation than L,,,(6) for E[£(0)].
Optimization « LS loss and MS loss can be recovered by setting /. %@kﬁi%
A mini-batch of examples denoted by {x,...,xp}, B is the ! 53
batch size. B? pairs are constructed between this samples. The Theoretical Guarantees foe - recalor
naive approaCh (mOSt Common) for DML is minimiZing dVverage Llet Z7 = {Z),...,Z,} be iid. random losses taking values in [M, M;| where M = Zzz EEEEEE?&
loss function in terms of 6 within a batch: M, — My. Suppose P, = (1/n,...,1/n) is the empirical distribution, Uy = {3, p; = |
1 B B 1,p; > 0, Dy(p||Pn) < L} Denote the empirical variance of 71, ..., Z, by Var,(Z) and K
Eavg( ) S‘ M Zzy( ) fix p>0. Ifn> max{v24p Var 1}M2 then

Recover of LS and MS
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» Design More Complicated Losses:

« Lifted-Structure(LS) [1] loss: Recalla K (%) 1 10 20 30 40 50
5 MS 79.8 949 96.8 97.6 97.9 983
Lrs=Yllog 3 5 +1og 3~ €5, Three Variants DRO for DML LS 826 941 956 96.4 96.9 97.4

DRO-KL-G-y =1 |84.8 95.9 97.3 97.9 98.2 98.5
DRO-KL-G-yv = 0.1 [85.1 96.1 97.5 98.0 98.3 98.5
DRO-KL-G-y = 0.01 /85.8 96.2 97.9 97.8 98.2 98.4
DRO-KL-G-y = 0.001 | 85.7 96.1 97.4 97.9 98.2 98.5
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«  Multi-Similarity(MS) [2] loss:

For each x; serve as an anchor in a given mini-batch whose

B : : : : .
Lyg = 1 Z{llog 1+ Z e~ Sk llog 1+ Z e S|Z? 1S B1 Pz — {]‘yz] : 17] - [B]} an_d_ Nz — {]|ij: Table: Recover of MS loss and LS loss on In-Shop
big « kP, "B EEN; 0,7 € |B]} denote the index sets of positive and negative
(3) pairs, respectively. P = UZ,P; and N = U2, N;,. Three SOTA Quantitive Results
where A, o, 3 are hyper-parameters. S;; =< f(x;;0), f(x;;0) > variants of general framework with different uncertainty set U
flerjotes the similarity of the tvv.o samples in the embedding space. i< defined as follows: Recall G 0 90 30 40 0
- Mining Strategy (Sampling): DRO-TooK: FashionNet 53.7 73.0 76.0 77.0 79.0 80.0
= Hard (Seimi-Hard): Select hard ne.g_ative Pairs whose distance is T . ﬂgf gg:; gjzg gg:g g;; 33:2 g?é
smaller than that between the positive pairs. max S il ((9) ABIER 831 951 969 975 97.8 98.0
= Distance Weighted Sampling (DWS): Negative pairs sampled P Tl icPON, A ABE 87.3 96.7 979 982 985 98.7
according to their distance distribution within a batch. B o o - DRO_TOI:)A;M(OWS) 98519}) 3;'_91 32'_57 gg:g :99_'11 gg:;
- - . St o= < D < DRO-TopK5(Ours) 90.7 97.7 98.4 98.8 99.0 99.1
Deficiency: zzz:l JePIN, Py =1,0 < py < /K, DRO-TopK-PN,(Ours) 91.3 98.0 98.7 98.9 99.1 99.2
« Losses are more and more complicated but hard to DRO-TopK-PN(Ours) 91.1 98.1 98.6 98.8 99.0 99.2
¥ 4 and also fai 31 why ite affect « DRO-TopK-PN: DRO-KL,/(Ours) ~ 90.8 98.0 98.6 99.0 99.1 99.2
un e.rst.an , and also raill to e.xp aln why Its errectiveness. B Table: Recall@k on In-Shop
= Heuristic and lack of theoretical guarantee. max >, >, pijlij(0)
: . c{0, 1Y .1
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« Close-form p can be derived using KKT-Condition.




