A Simple and Effective Framework for Pairwise Deep Metric Learning

Qi Qi, Yan Yan, Zixuan Wu Xiaoyu Wang, Tianbao Yang qi-qi@uiowa.edu, yanyan.tju@gmail.com

University of Iowa.

Introduction	Contributions	Empirical Studies				
 Deep Metric Learning: Task: Learning a metric to measure the distance between 	 We proposed a general DRO framework for DML. Theoretical justification of the proposed framework is 	Datasets				
 pairs by training a deep neural network. Goal: Euclidean distance of pairs from the same class shall be small, while pairs from different classes shall be large. 	provided from the perspective of advance learning theories. The proposed general DRO framework can recover	 Three Benchmark Datasets Data Sets # of training # of testing # of Classes Cub-200-2011 5864 5924 200 				
Deep Neural	SOTA complicated pair-based losses: MS Loss and LS Loss by specifying different uncertainty sets.	Cars-196 8054 8131 196 In-shop 14,218 12,612 7,970 Evaluation Matric: Pacall@k				

Overview of Training Process:

• Pair-based Losses: given two examples $(\mathbf{x}_i, y_i), (\mathbf{x}_j, y_j), (\mathbf{x}_j,$ deep neural network is parametrized as θ :

 $\ell_{ij}(\Theta) = \ell(f(\mathbf{x}_i; \theta), f(\mathbf{x}_j; \theta); y_{ij})$ (1)where $y_{ij} = 1$ if $y_i = y_j$, and $y_{ij} = 0$ if $y_i \neq y_j$. $f(\cdot, \theta)$ is the output of the neural network.

Optimization

Wore effective solutions has been provided under DRU framework for tackling DML. Experimental results show that our proposed variants of DRO framework outperform SOTA methods on several benchmark datasets

General DRO-based Framework

$$\mathcal{L}(\theta) = \max_{\mathbf{p} \in \mathcal{U}} g(\theta, \mathbf{p}) := \sum_{i=1}^{B} \sum_{j=1}^{B} p_{ij} l_{ij}(\theta),$$

where $\mathbf{p} \in \mathbb{R}^{B^2}_+$ is a non-negative vector with each element p_{ij} representing a weight (sampling probability) for an individual pair. $\mathcal{U} \subseteq \mathbb{R}^{B^2}$ denotes the decision set of p.

• $\mathcal{L}(\theta)$ is more robust to pair imbalance than \mathcal{L}_{avg} .

• Theoretical analysis in [3, 4] verified that $\mathcal{L}(\theta)$ is a better approximation than $\mathcal{L}_{avq}(\theta)$ for $\mathbf{E}[\ell(\theta)]$. LS loss and MS loss can be recovered by setting \mathcal{U} .

Margin Loss:

(4)

$$\ell_{ij}(\theta) = [\alpha + y_{ij}(\lambda - S_{ij})]_+$$

Imbalance and Runtime

A mini-batch of examples denoted by $\{\mathbf{x}_1,...,\mathbf{x}_B\}$, B is the batch size. B^2 pairs are constructed between this samples. The naive approach (most common) for DML is minimizing average loss function in terms of θ within a batch:

$$\mathcal{L}_{avg}(\theta) = \frac{1}{B^2} \sum_{i=1}^{B} \sum_{j=1}^{B} l_{ij}(\theta)$$

- **Design More Complicated Losses**:
- Lifted-Structure(LS) [1] loss:

 $\mathcal{L}_{LS} = \sum_{i=1}^{D} [\log \sum_{k \in P_i} e^{\lambda - S_{ik}} + \log \sum_{k \in N_i} e^{S_{ik} - \lambda}]_+,$

(2)

Multi-Similarity(MS) [2] loss:

 $\mathcal{L}_{MS} = \frac{1}{B} \sum_{i=1}^{B} \{ \frac{1}{\alpha} \log[1 + \sum_{k \in P_i} e^{-\alpha(S_{ik} - \lambda)}] + \frac{1}{\beta} \log[1 + \sum_{k \in N_i} e^{\beta(S_{ik} - \lambda)}] \}$ (3)

where λ, α, β are hyper-parameters. $S_{ij} = \langle f(\mathbf{x}_i; \theta), f(\mathbf{x}_j; \theta) \rangle$ denotes the similarity of the two samples in the embedding space.

- Mining Strategy (Sampling):
 - Hard (Seimi-Hard): Select hard negative pairs whose distance is smaller than that between the positive pairs.
 - Distance Weighted Sampling (DWS): Negative pairs sampled according to their distance distribution within a batch.

Theoretical Guarantees

Let $Z = \{Z_1, ..., Z_n\}$ be i.i.d. random losses taking values in $[M_0, M_1]$ where M = $M_1 - M_0$. Suppose $\hat{\mathbf{p}}_n = (1/n, \dots, 1/n)$ is the empirical distribution, $\mathcal{U}_{\phi} = \{\sum_i p_i = 0\}$ $1, p_i \ge 0, D_{\phi}(\mathbf{p} \| \hat{\mathbf{p}}_n) \le \frac{\rho}{n}$. Denote the empirical variance of Z_1, \ldots, Z_n by $\operatorname{Var}_n(Z)$ and fix $\rho \geq 0$. If $n \geq \max\{\frac{24\rho}{\operatorname{Var}(Z)}, \frac{16}{\operatorname{Var}(Z)}, 1\}M^2$, then

$$\sup_{\mathbf{p}\in\mathcal{U}_{\phi}}\sum_{i=1}^{n}p_{i}Z_{i}=\frac{1}{n}\sum_{i=1}^{n}Z_{i}+\sqrt{\frac{2\rho\mathsf{Var}_{n}(Z)}{n}}.$$

Three Variants DRO for DML

For each \mathbf{x}_i serve as an anchor in a given mini-batch whose size is B, \mathbf{P}_i = $\{j|y_{ij}$ = $1, j \in [B]\}$ and \mathbf{N}_i = $\{j|y_{ij}$ = $0, j \in [B]$ denote the index sets of positive and negative pairs, respectively. $\mathbf{P} = \bigcup_{i=1}^{B} \mathbf{P}_{i}$ and $N = \bigcup_{i=1}^{B} \mathbf{N}_{i}$. Three variants of general framework with different uncertainty set \mathcal{U} is defined as follows:

DRO-TopK: $\max_{\mathbf{p}} \sum_{i=1}^{\infty} \sum_{i \in \mathbf{P}_i \mid i}$ $p_{ij}l_{ij}(\theta)$

Recover of LS and MS

Recall@K(%)	1	10	20	30	40	50
MS	79.8	94.9	96.8	97.6	97.9	98.3
LS	82.6	94.1	95.6	96.4	96.9	97.4
$DRO\text{-}KL\text{-}G\text{-}\gamma = 1$	84.8	95.9	97.3	97.9	98.2	98.5
$DRO\text{-}KL\text{-}G\text{-}\gamma=0.1$	85.1	96.1	97.5	98.0	98.3	98.5
$DRO\text{-}KL\text{-}G\text{-}\gamma=0.01$	85.8	96.2	97.9	97.8	98.2	98.4
$DRO\text{-}KL\text{-}G\text{-}\gamma=0.001$	85.7	96.1	97.4	97.9	98.2	98.5
T						

Table: Recover of MS loss and LS loss on In-Shop

SOTA Quantitive Results

		Recall@K	1	10	20	30	40	50	
		FashionNet	53.7	73.0	76.0	77.0	79.0	80.0	
		HDC	62.1	84.9	89.0	91.2	92.3	93.1	
		HDL	80.9	94.3	95.8	97.2	97.4	97.8	
		ABIER	83.1	95.1	96.9	97.5	97.8	98.0	
		ABE	87.3	96.7	97.9	98.2	98.5	98.7	
		MS	89.7	97.9	98.5	98.8	99.1	99.2	
		$DRO-TopK_M(Ours)$	91.0	98.1	98.7	99.0	99.1	99.2	
		DRO-TopK _B (Ours)	90.7	97.7	98.4	98.8	99.0	99.1	
		DRO-TopK- $PN_M(Ours)$	91.3	98.0	98.7	98.9	99.1	99.2	
		DRO-TopK-PN $_B$ (Ours)	91.1	98.1	98.6	98.8	99.0	99.2	
		$DRO\operatorname{-KL}_M(Ours)$	90.8	98.0	98.6	99.0	99.1	99.2	
		Table	Recall	$ @k \circ$	n In_ ^q	Shon			
			i i ccan		'II III \	Juop			
		Do	for						
		Re	ler	en	ces				
[1]	Oh Song,	Hyun, et al. Deep	o me	tric I	earn	ing v	via lif	ted st	tructured
	fosturo on	nhedding CVPR	2016			U			
	reature embedding. CVPR 2010.								
[2]] Wang Xun et al Multi-Similarity Loss with General Pair Weighting								
[_]	[2] valie, Aut, et al. Multi-Similarity LOSS with General Fair verginning								
	for Deep	Metric Learning. (_VPI	R, 20)19.				
[2]	2] Namkoong Hongcook and John C. Duch: Marianas based								
[၁]	јој Namkoong, попgseok, and Jonn C. Duchi. Variance-based								
	regularization with convex objectives. <i>NIPS</i> , 2017								
۲ <u>م</u> ٦									
[4]	[4] Maurer, Andreas, and Massimiliano Pontil. Empirical Bernstein								
	bounds and sample variance penalization. arXiv preprint								
2rXiu 0007 3710 2000									
	ai/\iv.090	1.3140, 2009.							

Deficiency:

- Losses are more and more complicated but hard to understand, and also fail to explain why its effectiveness.
- Heuristic and lack of theoretical guarantee.
- Fail to address the most fundamental challenge: Pair Imbalance

- represent positive pairs, --- represent negative pairs.

s.t. $\sum \sum p_{ij} = 1, 0 \le p_{ij} \le 1/K,$ $i=1 \ j \in \mathbf{P}_i \cup \mathbf{N}_i$ DRO-TopK-PN: $\max_{\mathbf{p}\in\{0,1\}^{P+N}}\sum_{i=1}\sum_{j\in\mathbf{P}_i\cup\mathbf{N}_i}p_{ij}l_{ij}(\theta)$ s.t. $\sum_{i=1}^{B} \sum_{j \in \mathbf{P}_{i}} p_{ij} \leq \frac{K}{2}, \sum_{i=1}^{B} \sum_{j \in \mathbf{N}^{\mathsf{T}}} p_{ij} \leq \frac{K}{2}.$ DRO-KL: $\max_{\mathbf{p}\in\mathbb{R}^{P+N}_{+}}\sum_{i=1}\sum_{j\in\mathbf{P}_{i}\cup\mathbf{N}_{i}}p_{ij}l_{ij}(\theta)-\gamma D_{KL}(\mathbf{p}||\frac{\mathbf{I}}{P+N}),$ s.t. $\sum_{i=1} \sum_{j \in \mathbf{P}_i \cup \mathbf{N}_i} p_{ij} = 1,$ where $\gamma > 0$ is a hyper-parameter and D_{KL} denotes the KL divergence between two distributions.

Close-form p can be derived using KKT-Condition.