Qi Qi^{*†}, Youzhi Luo^{*‡}, Zhao Xu^{*‡}, Shuiwang Ji[‡], Tianbao Yang[†] [‡]Department of Computer Science & Engineering, Texas A&M University [†]Department of Computer Science, The University of Iowa {qi-qi,tianbao-yang}@uiowa.edu, {yzluo,zhaoxu,sji}@tamu.edu * Equal contribution.

Background and Problem Definition

Aera Under Precision-Recall Curves (AUPRC):

$$AUPRC = \int_{-\infty}^{\infty} \Pr(Y = 1 | F \ge c) d\Pr(F \le c | Y = c)$$

where c is the prediction threshold. $Y \in \{0,1\}$ is the label. For a finite set of examples $\mathbf{D} = \{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ with the prediction score for each example \mathbf{x}_i given by $h_{\mathbf{w}}(\mathbf{x}_i)$, we consider to use AP to approximate AUPRC, which is given by

$$AP = \frac{1}{n_{+}} \sum_{i=1}^{n} \mathbf{I}(y_{i} = 1) \frac{\sum_{s=1}^{n} \mathbf{I}(y_{s} = 1) \mathbf{I}(h_{\mathbf{w}}(\mathbf{x}_{s}) \ge h_{\mathbf{w}}(\mathbf{x}_{s})}{\sum_{s=1}^{n} \mathbf{I}(h_{\mathbf{w}}(\mathbf{x}_{s}) \ge h_{\mathbf{w}}(\mathbf{x}_{i}))}$$

where n_+ denotes the number of positive examples. It can be shown that AP is an unbiased estimator in the limit $n \to \infty$ [1].

Surrogate AP Loss

$$\min_{\mathbf{w}} P(\mathbf{w}) = \frac{1}{n_+} \sum_{\mathbf{x}_i \in \mathbf{D}_+} \frac{-\sum_{s=1}^n \mathbf{I}(y_s = 1)\ell(\mathbf{w}; \mathbf{x}_s; \mathbf{x}_i)}{\sum_{s=1}^n \ell(\mathbf{w}; \mathbf{x}_s; \mathbf{x}_i)}$$

 $\ell(\mathbf{w}; \mathbf{x}_s, \mathbf{x}_i)$ is a surrogate function of $\mathbf{I}(h_{\mathbf{w}}(\mathbf{x}_s) \ge h_{\mathbf{w}}(\mathbf{x}_i))$, e.g., squared hinge loss, logistic loss and sigmoid loss, etc.

Related Work

1 Traditional: Hill Climb Search [1], Dynamic Programming [2] • Maximizing AP Score: Approximate gradient of AP or its smooth function Sensitive to batch size: SmoothAP [3], FastAP [4]

Research Question

Can we design direct stochastic optimization algorithms both in SGD-style and Adam-style for maximizing AP with provable convergence guarantee? Yes!

Problem Formulation

We cast the problem into a finite-sum of compositional functions. By denoting $g(\mathbf{w};\mathbf{x}_i,\mathbf{x}_i) = [g_1(\mathbf{w};\mathbf{x}_i,\mathbf{x}_i),g_2(\mathbf{w};\mathbf{x}_i,\mathbf{x}_i)]^\top = [\ell(\mathbf{w};\mathbf{x}_i,\mathbf{x}_i)\mathbf{I}(y_i=1),\ell(\mathbf{w};\mathbf{x}_i,\mathbf{x}_i)]^\top$ (2)

$$g(\mathbf{w}, \mathbf{x}_j, \mathbf{x}_l) = [g_1(\mathbf{w}, \mathbf{x}_j, \mathbf{x}_l), g_2(\mathbf{w}, \mathbf{x}_j, \mathbf{x}_l)] = [c(\mathbf{w}, \mathbf{x}_j, \mathbf{x}_l)\mathbf{I}(\mathbf{y}_j - \mathbf{I})]$$
$$g_{\mathbf{x}_i}(\mathbf{w}) = \mathbb{E}_{\mathbf{x}_j \sim \mathbf{D}}[g(\mathbf{w}; \mathbf{x}_j, \mathbf{x}_l)],$$

where $g_{\mathbf{x}_i}(\mathbf{w}) : \mathbb{R}^d \to \mathbb{R}^2$. Let $f(\mathbf{s}) = -\frac{s_1}{s_2} : \mathbb{R}^2 \to \mathbb{R}$. Then, we can write the surrogate AP loss $P(\mathbf{w})$ as a sum of compositional functions:

$$P(\mathbf{w}) = \frac{1}{n_+} \sum_{\mathbf{x}_i \in \mathbf{D}_+} f(g_{\mathbf{x}_i}(\mathbf{w})) = \mathbb{E}_{\mathbf{x}_i \sim \mathbf{D}_+} [f(g_{\mathbf{x}_i}(\mathbf{w}))]$$

Assumptions

Assumption 1: Assume that

- (a) There exists Δ_1 such that $P(\mathbf{w}_1) \min_{\mathbf{w}} P(\mathbf{w}) \leq \Delta_1$;
- (b) There exist C, M > 0 such that $\ell(\mathbf{w}; \mathbf{x}_i, \mathbf{x}_i) \ge C$ for any $\mathbf{x}_i \in \mathbf{D}_+, \ell(\mathbf{w}; \mathbf{x}_j, \mathbf{x}_i) \le M$, and $\ell(\mathbf{w}; \mathbf{x}_i, \mathbf{x}_i)$ is Lipschiz continuous and smooth with respect to w for any $\mathbf{x}_i \in \mathbf{D}_+, \mathbf{x}_j \in \mathscr{D};$
- (c) There exists V > 0 such that $\mathbb{E}_{\mathbf{x}_i \sim \mathbf{D}}[\|g(\mathbf{w}; \mathbf{x}_j, \mathbf{x}_i) g_{\mathbf{x}_i}(\mathbf{w})\|^2] \leq V$, and $\mathbb{E}_{\mathbf{x}_j \sim \mathbf{D}}[\|\nabla g(\mathbf{w}; \mathbf{x}_j, \mathbf{x}_i) - \nabla g_{\mathbf{x}_i}(\mathbf{w})\|^2] \leq V \text{ for any } \mathbf{x}_i.$

With a bounded score function $h_{\mathbf{w}}(\mathbf{x})$ the above assumption can be easily satisfied. Assumption 1 also implies $P(\mathbf{w})$ is smooth.

Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence

$(\mathbf{x}_i))$

(3)

Algorithm 1 SOAP

- **Input:** γ, α, u_0 , and other parameters for SGD-stype update or Adam-stype update. 2: Initialize $\mathbf{w}_1 \in \mathbb{R}^d$, $\mathbf{u} \in \mathbb{R}^{|n_+| \times 2}$
- 3: for t = 1, ..., T do
- 4: Draw a batch of B_+ positive samples denoted by \mathscr{B}_+ .
- 5: Draw a batch of B samples denoted by \mathcal{B} .
- 6: $\mathbf{u} = \mathsf{UG}(\mathscr{B}, \mathscr{B}_+, \mathbf{u}, \mathbf{w}_t, \boldsymbol{\gamma}, \boldsymbol{u}_0)$
- Compute (biased) Stochastic Gradient Estimator

$$G(\mathbf{w}_{t}) = \frac{1}{B_{+}} \sum_{\mathbf{x}_{i} \in \mathscr{B}_{+}} \sum_{\mathbf{x}_{i} \in \mathscr{B}} \frac{(\mathbf{u}_{\mathbf{x}_{i}}^{1} - \mathbf{u}_{\mathbf{x}_{i}}^{2} \mathbf{I}(j=1)) \nabla \ell(\mathbf{w}; \mathbf{x}_{j}, \mathbf{x}_{i})}{B(\mathbf{u}_{\mathbf{x}_{i}}^{2})^{2}}$$

8: Update \mathbf{w}_{t+1} by a SGD-style method or by a Adam-style method

$$\mathbf{w}_{t+1} = \mathsf{UW}$$

9: end for

Algorithm 2 UG($\mathscr{B}, \mathscr{B}_+, \mathbf{u}, \mathbf{w}_t, \gamma, u_0$)

- 1: for each positive $\mathbf{x}_i \in \mathscr{B}_+$ do
- 2: Compute

$$[\tilde{g}_{\mathbf{x}_{i}}(\mathbf{w}_{t})]_{1} = \frac{1}{|\mathscr{B}|} \sum_{\substack{x_{j} \in \mathscr{B} \\ y_{j} = 1}} \ell(\mathbf{w}_{t}; \mathbf{x}_{j}, \mathbf{x}_{i})$$
$$[\tilde{g}_{\mathbf{x}_{i}}(\mathbf{w}_{t})]_{2} = \frac{1}{|\mathscr{B}|} \sum_{\substack{x_{j} \in \mathscr{B}}} \ell(\mathbf{w}_{t}; \mathbf{x}_{j}, \mathbf{x}_{i})$$

- 3: Compute $\mathbf{u}_{\mathbf{x}_i}^1 = (1 \gamma)\mathbf{u}_{\mathbf{x}_i}^1 + \gamma[\tilde{g}_{\mathbf{x}_i}(\mathbf{w}_t)]_1$ $\mathbf{u}_{\mathbf{x}_i}^2 = \max((1 \gamma)\mathbf{u}_{\mathbf{x}_i}^2 + \gamma[\tilde{g}_{\mathbf{x}_i}(\mathbf{w}_t)]_2, u_0)$ 4: end for
- Return u

SGD-Style Theorem (Algorithm 1 + 2)

Suppose Assumption 1 holds, let the parameters be $\alpha = \frac{1}{n^{2/5}T^{3/5}}, \gamma = \frac{n^{2/5}}{T^{2/5}}, \forall t \in 1, \dots, T$, and $T > n_+$. Then after running T iterations, SOAP with a SGD-style update satisfies $\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\|\nabla P(\mathbf{w}_t)\|^2\right] \leq O(\frac{n_+^{2/5}}{T^{2/5}})$, where *O* suppresses constant numbers.

Adam-Style Theorem (Algorithm 1 + 3)

update satisfies $\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T} \|\nabla P(\mathbf{w}_t)\|^2\right] \leq O(\frac{n_+^{2/5}}{T^{2/5}})$, where *O* suppresses constant numbers.

Literature

[1]Metzler, D., Croft, W. B. (2005, August). A markov random field model for term dependencies. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval.

[2] Song, Y., Schwing, A., Urtasun, R. (2016, June). Training deep neural networks via direct loss minimization. In International Conference on Machine Learning. [3] Brown, A., Xie, W., Kalogeiton, V., Zisserman, A. (2020, August). Smooth-ap: Smoothing the path towards large-scale image retrieval. In European Conference on Computer Vision. [4] Cakir, F., He, K., Xia, X., Kulis, B., Sclaroff, S. (2019). Deep metric learning to rank. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Proposed Stochastic Algorithms: SOAP

 $N(\mathbf{w}_t, G(\mathbf{w}_t))$

Algorithm 3 UW($\mathbf{w}_t, G(\mathbf{w}_t)$)

1: Option 1: SGD-style update (paras: α)

(4)

 $\mathbf{w}_{t+1} = \mathbf{w}_t - \boldsymbol{\alpha} G(\mathbf{w}_t)$ 2. Ontion 2. Adam-style undate (paras

2. Option 2. Addinistyle update (paras:

$$\alpha, \varepsilon, \eta_1, \eta_2$$
)
 $h_{t+1} = \eta_1 h_t + (1 - \eta_1) G(\mathbf{w}_t)$
 $v_{t+1} = \eta_2 \hat{v}_t + (1 - \eta_2) (G(\mathbf{w}_t))^2$
 h_{t+1}

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \frac{\mathbf{w}_{t+1}}{\sqrt{\varepsilon + \hat{v}_{t+1}}}$$

where $\hat{v}_t = v_t$ (Adam) or $\hat{v}_t = \max(\hat{v}_{t-1}, v_t)$ (AMSGrad)

Return: \mathbf{w}_{t+1}

Suppose Assumption 1 holds, let the parameters $\eta_1 \leq \sqrt{\eta_2} \leq 1$, $\alpha = \frac{1}{n_+^{2/5}T^{3/5}}, \gamma = \frac{n_+^{2/5}}{T^{2/5}}, \forall t \in 1, \dots, T$, and $T > n_+$. Then after running T iterations, SOAP with an AMSGRAD

Figure 1:Left most: Comparison of convergence of different methods in terms of test AUPRC scores on MIT AICURES. Middle: Consistency between AP and Surrogate Objective -P(w)vs Iterations on CIFAR10. Right most: Insensitivity to batch size of SOAP.

Table: The test AUPRC over 3 independent runs by SOAP with different surrogate functions.								
Data	CIFAR10		CIFAR100					
Networks	ResNet18	ResNet34	ResNet18	ResNet34				
Squared Hinge	$0.7629 (\pm 0.0014)$	0.7012 (±0.0056)	0.6251 (±0.0053)	0.6001 (±0.0060)				
Logistic	$0.7542 (\pm 0.0024)$	0.6968 (±0.0121)	0.6378 (±0.0031)	$0.5923 \ (\pm 0.0101)$				
Sigmoid	$0.7652 (\pm 0.0035)$	0.6983 (±0.0084)	$0.6271 (\pm 0.0043)$	$0.5832 \ (\pm 0.0054)$				

Comparison with State-Of-The-Art (SOTA) methods

- Cross entropy loss (CE)
- Three surrogate AP: MinMax, SmoothAP, FastAP

Tasks: Imbalanced binary image classification. Datasets: Binary Imbalanced CIFAR10, CIFAR100 (Manually Constructed), Melanoma Evaluation Metric: AUPRC Model: ResNet18, ResNet34 Optimzer: SGD-Style SOAP Table: The test AUPRC on the image datasets with two ResNet models. We report the average AUPRC and standard deviation (within brackets) over 5 runs.

Datasets	CIFAR-10		CIFAR-100	
Networks	ResNet18	ResNet34	ResNet18	ResNet34
CE	$0.7155 (\pm 0.0058)$	$0.6844(\pm 0.0031)$	$0.5946 (\pm 0.0031)$	$0.5792 (\pm 0.0028)$
CB-CE	$0.7325 (\pm 0.0039)$	$0.6936(\pm 0.0021)$	$0.6165 (\pm 0.0096)$	$0.5632(\pm 0.0129)$
Focal	$0.7183(\pm 0.0082)$	$0.6943(\pm 0.0007)$	$0.6107(\pm 0.0093)$	$0.5585(\pm 0.0285)$
LDAM	$0.7346 (\pm 0.0125)$	$0.6745(\pm 0.0043)$	$0.6153 (\pm 0.0100)$	$0.5662(\pm 0.0212)$
AUC-M	$0.7399(\pm 0.0013)$	$0.6825(\pm 0.0089)$	$0.6103 (\pm 0.0075)$	$0.5306(\pm 0.0230)$
SmoothAP	$0.7365 (\pm 0.0088)$	$0.6909 (\pm 0.0049)$	$0.6071(\pm 0.0143)$	$0.5208~(\pm~0.0505)$
FastAP	$0.7028 (\pm 0.0341)$	$0.6798~(\pm 0.0032)$	$0.5618(\pm 0.0351)$	$0.5151(\pm 0.0450)$
MinMax	$0.7228 (\pm 0.0118)$	$0.6806(\pm 0.0027)$	$0.6071(\pm 0.0064)$	$0.5518(\pm 0.0030)$
SOAP	$0.7629(\pm 0.0014)$	$0.7012(\pm 0.0056)$	$0.6251 (\pm 0.0053)$	$0.6001(\pm 0.0060)$

Tasks: Graph Neural Network Prediction Datasets: HIV, MUV, MIT-AICURES **Evaluation Metric:** AUPRC Model: GINE, MPNN, ML-MPNN **Optimzer**: Adam-Style SOAP Table: The test AUPRC values on the HIV datasets with three graph neural network models over 3 independent runs

Dataset	Method	GINE	MPNN	ML-MPNN
HIV	CE	$0.2774~(\pm 0.0101)$	$0.3197~(\pm 0.0050)$	$0.2988~(\pm 0.0076)$
	CB-CE	$0.3082 \ (\pm \ 0.0101)$	$0.3056~(\pm~0.0018)$	$0.3291 (\pm 0.0189)$
	Focal	$0.3179~(\pm 0.0068)$	$0.3136 \ (\pm \ 0.0197)$	$0.3279 \ (\pm \ 0.0173)$
	LDAM	$0.2904~(\pm 0.0008)$	$0.2994~(\pm 0.0128)$	$0.3044 \ (\pm \ 0.0116)$
	AUC-M	$0.2998~(\pm 0.0010)$	$0.2786~(\pm~0.0456)$	$0.3305~(\pm 0.0165)$
	SmothAP	$0.2686 \ (\pm \ 0.0007)$	$0.3276~(\pm 0.0063)$	$0.3235~(\pm 0.0092)$
	FastAP	$0.0169~(\pm 0.0031)$	$0.0826~(\pm 0.0112)$	$0.0202 \ (\pm \ 0.0002)$
	MinMax	$0.2874 \ (\pm \ 0.0073)$	$0.3119~(\pm 0.0075)$	$0.3098~(\pm 0.0167)$
	SOAP	$0.3385 (\pm 0.0024)$	$0.3401 \ (\pm \ 0.0045)$	$0.3547 (\pm 0.0077)$

Ablation Study

Soap code for reproducing results. https://github.com/Optimization-AI

• SOTA imbalanced DL methods: LDAM, CB-CE, Focal, and AUC-M