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Background and Problem Definition

Distributionally Robust Optimization (DRO):

• Problem Formulation:

min
w∈Rd

max
p∈∆n

{
Fp(w) =

n

∑
i=1

piℓ(w;zi)−h(p,1/n)+ r(w)
}
, (1)

1 where ∆n = {p ∈ Rn : ∑i pi = 1, pi ≥ 0}.
2 ℓ(w;z): denotes a loss function on data z = (x,yI)∼ D,
3 h(p,1/n) : a divergence measure
4 r(w) is convex regularizer of w

Non-Convex Concave Min-Max Optimization

Related Work

Primal-Dual algorithms:

• PG-SMD [1], Epoch Primal-Dual SGD [2], O(1/ε4)
• Stoc-AGDA [3], PE-SGDA [4]
• O(1/µ2ε) by leveraging PL Condition

Deficiencies:

•O(n) computational cost per p variable updates.

Note: As the computational cost is intolerable for updating p variable when the data size n
is huge, Primal-Dual algorithms are not as favorable as SGD-type algorithms for DL.

Research Question

Can we design an efficient algorithm that is independent of data size n, has faster
convergence rates and is also applicable to deep neural network training? Yes

Compositional Equivalence of Fp(w)

Considering the KL-divergence measure, e.g., h(p,1/n) =−
n
∑

i=1
pi log(npi)

min
w∈Rd

{
Fdro(w) = λ log

(
Ez exp

(
ℓ(w;z)

λ

))
+ r(w)

}
. (2)

General Compositional Optimization

Assumptions

Assumption 1: (Non-convex Setting) Let C f ,L f ,Cg and Lg be positive constants. Assume
that

(a) f : Rp→ R is a C f -Lipschitz function and its gradient ∇ f is L f -Lipschitz.
(b) gz : Rd→ Rp satisfies E∥gz(w1)−gz(w2)∥2]≤C2

g∥w1−w2∥2 for any w1,w2 and its
Jacobian ∇gz satisfies E[∥∇gz(w1)−∇gz(w2)∥2]≤ L2

g∥w1−w2∥2.
(c) r : Rd→ R∪{∞} is a convex and lower-semicontinuous function.
(d) F∗ = infw F(w)≥−∞ and F(w1)−F∗ ≤ ∆F for the initial solution w1.
(e) Let σg and σg′ be positive constants and σ2 = σ2

g +σ2
g′. Assume that

Ez[∥gz(w)−g(w)∥2]≤ σ
2
g , Ez[∥∇gz(w)−∇g(w)∥2]≤ σ

2
g′.

Assumption 2: (PL Condition Setting) When r(w) is a smooth function, F(w) satisfies
the µ-PL condition if there exists µ > 0 such that

2µ(F(w)− min
w∈Rd

F(w))≤ ∥∇F(w)∥2. (3)
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Proposed Stochastic Algorithms: COVER & RECOVER

Proximal Gradient Convergence Measure:

Gη(w) =
1
η
(w−proxη

r (w−η∇g(w)⊤∇ f (g(w)))).

When r = 0, the proximal gradient reduces to the standard gradient measure, i.e., Gη(w) =
∇F(w).
Sample Complexity: The sample complexity is defined as the number of samples z in
order to achieve E[∥Gη(w)∥2]≤ ε for a certain η > 0 or E[F(w)−F∗]≤ ε .

Algorithm 1 COVER (w1,u1,v1,{ηt},T,PL = False)
1: Let at = cη2

t
2: if not PL then
3: Draw a samples z and construct the estimates: u1 = gz(w1), v1 = ∇gz(w1)
4: end if
5: for t = 1, . . . ,T −1 do
6: wt+1← proxηt

r (wt−ηtv⊤t ∇ f (ut))
7: Draw a samples zt+1, and update

ut+1 = gzt+1(wt+1)+(1−at+1)(ut−gzt+1(wt))

vt+1 = ∇gzt+1(wt+1)+(1−at+1)(vt−∇gzt+1(wt))

8: end for
9: Return: (wτ,uτ,vτ) for randomly selected τ ∈ {1, . . . ,T}.

Algorithm 2 RECOVER(w0,ε0,c)
1: Initialization: Draw a sample z0 and construct the estimates u0 = gz0(w0), v0 =

∇gz0(w0)
2: for k = 1, . . . ,K do
3: (wk,uk,vk) = COVER(wk−1,uk−1,vk−1,ηk,Tk,True)
4: change ηk,Tk according to Theorem RECOVER
5: end for
6: Return: wK

Theorem COVER (Non-convex)

Assume Assumption 1 holds, for any C > 0, k = Cσ2/3

L , c = 128L+σ2/(7Lk3), w =

max((16Lk3),2σ2,( ck
4L)

3), and ηt = k/(w+σ2t)1/3. The output of COVER satisfies

E[∥Gηt∗(wt∗)∥2]≤ Õ

(
∆F

T 2/3 +
σ2

T 2/3

)
. (4)

where t∗ is sampled from {1, . . . ,T}.

Theorem RECOVER (PL Condition)

Assume that assumption 1, 2 hold and define constants ε1 =
c2σ2

64µL4 and εk = ε1/2k−1. By

setting ηk = min{
√

µεkL
2cσ

, 1
16L}, Tk = O(max{ 96cσ

µ3/2√εkL
, 2c2σ2

µL2εk
, ∆F

σ2}), c = 104L2, then after
K = O(log(ε1/ε)) stages, the output of RECOVER satisfies E[F(wK)−F∗]≤ ε .
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Summary of properties of state-of-the-art algorithms for solving our DRO problem. The
sample complexity is measured in terms of finding an ε-stationary point w/o PL condition,
i.e., ∥∇F(w)∥2 ≤ ε , or achieving ε-objective gap, i.e, F(w)−minw F(w)≤ ε with PL
condition. Õ omits a logarithmic dependence over ε . n represents the size of datasets for a
finite sum problem, d denotes the dimension of w. GDS represents whether the step size is
geometrically decreased.
Settings Algorithms Sample Complexity batch size GDS η Memory

Cost Style
w/o PL PG-SMD2 [1] O(n/ε +1/ε2) O(1) x O(n+d) Primal-Dual

ASC-PG [5] O(1/ε2) O(1) x O(d) Compositional
CIVR [6] O(1/ε3/2) O(1/ε) x O(d) Compositional

COVER (This paper) Õ(1/ε3/2) O(1) x O(d) Compositional
w/ PL Stoc-AGDA [3] O(1/µ2ε) O(1) x O(n+d) Primal-Dual

PES-SGDA [4] O(1/µ2ε) O(1) ✓ O(n+d) Primal-Dual
RCIVR [6] Õ(1/µε) O(1/ε) x O(d) Compositional

RECOVER (This paper) O(1/µε) O(1) ✓ O(d) Compositional

Emperical Studies on Multi-class Imbalance Deep Learning Tasks

Datasets:
First Half Last Half batch Classes Size Network Arch

STL10 100 500 32 10 5000 Resnet20
Clifar10 100 5000 128 10 50000 Resnet20
CIFAR100 100 500 128 100 50000 Resnet20
iNaturalist 2019 Practical Imbalanced Datatset 64 1010 265,213 Inception-V3

Evaluation: Testing accuracy vs GPU time
Objective: λ = 5, ℓ(w,z) cross entropy loss.
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RECOVER optimized DRO vs SGD optimized ERM

We compare the test accuracy learned by optimizing DRO using RECOVER and optimiz-
ing ERM using SGD on the imbalanced datasets: STL10, CIFAR10, CIFAR100, with four
imbalance ratio ρ = {0.02,0.05,0.1,0.2}.
Table:Test accuracy (%), mean (std), of SGD for ERM and RECOVER for DRO over 5
independent runs.
IMRATIO STL10 CIFAR10 CIFAR100

SGD RECOVER SGD RECOVER SGD RECOVER
0.02 37.97 (0.78) 38.08 (0.59) 65.36(0.64) 66.14 (0.48) 38.99 (0.62) 39.45 (0.56)
0.05 41.12 (0.94) 42.68 (0.60) 74.74 (0.71) 75.90 (0.33) 45.79 (0.69) 44.47 (0.66)
0.1 46.03 (0.96) 48.94 (0.86) 79.32 (0.42) 80.93 (0.31) 49.45 (0.5) 50.84 (0.86)
0.2 51.75 (1.14) 56.06 (1.26) 84.84 (0.51) 85.93 (0.14) 55.80 (0.74) 56.90 (0.42)

Efficient as Fine-tune Methods

Dataset: ImageNet-LT, Places-LT Models: ResNet50, ResNet152

Model ImageNet-LT Places-LT
Pretrained 40.50 23.28
CE (SGD) 41.29 (3e-3) 27.47 (1e-3)

Focal (SGD) 41.10 (2e-2) 27.64 (6e-3)
DRO (RECOVER) 42.30 (4e-4) 28.75 (4e-5)

Figure 1:Left: Test Accuracy vs λ on CIFAR10 data; Right: Test accuracy (%) of finetuned models by
different methods.

Code can be found at: https://github.com/qiqi-helloworld/RECOVER
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