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Distributionally Robust Optimization

Problem Formulation:

min
w∈Rd

max
p∈∆n

{
Fp(w) =

n∑
i=1

pi`(w ; zi )− h(p, 1/n) + r(w)
}
, (1)

1 where ∆n = {p ∈ Rn :
∑

i pi = 1, pi ≥ 0}.
2 `(w ; z): denotes a loss function on data z = (x , yI ) ∼ D,
3 h(p, 1/n) : a divergence measure
4 r(w) is convex regularizer of w

Non-Convex Concave Min-Max Optimization
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Applications in Deep Learning

Data Imbalance (Rahimian, H., Mehrotra, S. (2019).)

Label Noise (Li, Tian, et al. (2020).)
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Optimization Methods

Primal-Dual algorithms:

PG-SMD (Rafique et al. 2018), O(1/ε4)

Epoch Primal-Dual SGD (Yan et al. 2020), O(1/ε4)

Stoc-AGD (Yang et al. 2020)

O(1/µ2ε) by leveraging PL Condition

PE-SGDA (Guo et al. 2020)

O(1/µ2ε) by leveraging PL Condition

Deficiencies:

O(n) computational cost per variable updates.

Note: Primal-Dual are quite slow compared with SGD for DL, it required
additional computational cost for the dual variable p, which is depending
on the data size n.
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From Min-Max to Compositional Problem

Min-Max Formulation:

min
w∈Rd

max
p∈∆n

{
Fp(w) =

n∑
i=1

pi`(w ; zi )− λ
∑
i

pi log(npi ) + r(w)
}
, (2)

where ∆n = {p ∈ Rn :
∑

i pi = 1, pi ≥ 0}
Compositional Minimization Formulation

min
w∈Rd

{
Fdro(w) = λ log (Ez exp (`(w ; z)/λ)) + r(w)

}
. (3)

Belongs to a genereal family of problems:

min
w∈Rd

f (Eξ[g(w , ξ)]) + r(w)

Online Setting
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Compositional Problem

Optimization Algorithms for Problem

ASC-PG (Wang et al. 2017)

O(1/ε4.5)
Polynomially decay stepsize.

CIVR (Zhang et al. 2019)

O(1/ε3) and Õ(1/µε) by leveraging PL condition.
Large minibatch size required O(1/ε)

Question: Can we design a better algorithm that is independent of data
size n, is more practical for deep neural network training, and also has
faster convergence rates? Yes
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Contribution

We propose a practical online algorithm, RECOVER, for solving a class of
non-convex distributionally robust optimization (DRO) objectives:

Theory Contribution

It achieves:

1 General non-convex: O(1/ε3)

2 Polyak-Lojasiewicz (PL) condition: O(1/µε)

without any requirements on large mini batch or reference points.

Best Rates

Lower Bounds
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Contribution

Algorithm Comparison
Style Algorithms NC-SM PL Condition Batch Geo η

Primal-Dual
Stoc-AGDA - O(1/µ2ε) O(1) x
PG-SMD2 O(n/ε2 + 1/ε4) - O(n) x
PE-SGDA - O(1/µ2ε) O(1) X

Compositional
ASC-PG O(1/ε4.5) - O(1) x
RCIVR O(1/ε3) O(1/µε log(1/ε)) O(1/ε) x

RECOVER O(1/ε3) O(1/µε) O(1) X

where NC -SM denotes the non-convex smooth objective without PL
Condition.
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Contribution

Practical Perspective

1 RECOVER is a duality-free algorithm that much faster than SOTA
primal dual algorithms.

2 RECOVER resembles the practical stochastic Nesterov’s method in
several perspectives that are widely used for learning deep neural
networks
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Assumptions
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Algorithm: COVER
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Key Steps of the Algorithm COVER

min
w

f (Eξ[g(w; ξ)])

ut+1 = gξ(wt+1) + (1− at+1)(ut − gξ(wt))

vt+1 = ∇gξ(wt+1) + (1− at+1)(vt −∇gξ(wt))

wt+1 = wt − ηv>t+1∇f (ut+1)
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Algorithm: RECOVER

Stagewise Restarting COVER Algorithm

Main Theorem: RECOVER

By setting b = O(1), ηk . =
√
µεk

25L2σ
, Tk = max{ L2σ

µ3/2√εk
, L

2σ2

µεk
}, in order to

have E[F (wK )− F∗] ≤ ε. The sample complexity is O( 1
µε) .

Geometrically
Decreases

Lower Bounds
of Sample
Complexity

Constant
Mini-

batch Size
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Theoretical Verification of PL Assumption
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Three Experiments

Compare RECOVER with five State-Of-The-Art (SOTA) baselines
from two categories: (i) primal-dual algorithms for solving the
primal-dual formulation of DRO, and (ii) algorithms that are designed
for the stochastic compositional formulation of DRO.

Verify the advantages of DRO over Emperical Risk Minimization
(ERM) for imbalanced data problems

Show the RECOVER is also an effective fine-tuning algorithm for
large-scale imbalanced data training.
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Compare RECOVER with SOTA Baselines

Evaluation: Testing accuracy, GPU time and sample complexity .

λ = 5

`(w , z) cross entropy loss.

Datasets (Imbalanced Multi-Classification Tasks):
First Half Last Half batch Classes Size Network Arch

STL10 100 500 32 10 5000 Resnet20
Clifar10 100 5000 128 10 50000 Resnet20
CIFAR100 100 500 128 100 50000 Resnet20

iNaturalist 2019 Practical Imbalanced Datatset 64 1010 265,213 Inception-V3
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Testing Accuracy vs Running Time
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Conclusion and Observation:
1 RECOVER is much faster than primal-dual algorithms while achieving

comparable results on compositional results.
2 It could save days of training times on iNaturalist2019.
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Testing Accuracy vs # of processed training example
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Figure: Testing accuracy vs # of processed training examples

Conclusion and Observation:

1 RECOVER has the same number of samples with other algorithms.
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DRO with RECOVER vs ERM with SGD

We compare the test accuracy learned by optimizing DRO using
RECOVER and optimizing ERM using SGD on the imbalanced
datasets: STL10, CIFAR10, CIFAR100, with four imbalance ratio
ρ = {0.02, 0.05, 0.1, 0.2}.

Imbalance Ratio: The number of positive samples vs the number of
negative samples. The smaller the ratio, the harder the task.
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Effective as Fine-tune Methods

ImageNet-LT, Places-LT

ResNet50, ResNet152 Pretrained models.
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Thanks & Questions
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